
gsp4.org Search Results
Show Categories
31 Matches were found.Books (1)
- Rankin-Selberg convolutions for ${rm SO}_{2l+1} times {rm GL}_n$: local theory [41]
- David Soudry
- Mem. Amer. Math. Soc.
- Volume: 105
- Year: 1993
- Pages: vi+100 pp.
- MR number: 1169228
- Categorized under:
Articles (30)
- $L$ and $varepsilon$ factors for ${rm GSp}(4)$ [42]
- Ilya Piatetski-Shapiro; David Soudry
- J. Fac. Sci. Univ. Tokyo
- Volume: 28
- Year: 1981
- Pages: 505-530
- MR number: 0656034
- Categorized under:
- Root->Local representation theory [2]->Non-archimedean representation theory [29]->Theta correspondence [142]
- Root->Local representation theory [2]->Non-archimedean representation theory [29]->L-parameters and local factors [157]
- Root->Local representation theory [2]->Non-archimedean representation theory [29]->Whittaker, Fourier-Jacobi and Bessel models [159]
- $L$ and $varepsilon $ functions for ${rm GS}{rm p}(4)times {rm GL}(2)$ [184]
- Ilya Piatetski-Shapiro; David Soudry
- Proc. Nat. Acad. Sci. USA
- Volume: 81 (Phys. Sci.)
- Year: 1984
- Pages: 3924-3927
- MR number: 0747770
- Categorized under:
- The $L$ and $gamma $ factors for generic representations of ${rm GSp}(4,,k)times {rm GL}(2,,k)$ over a local non-Archimedean field $k$ [168]
- David Soudry
- Duke Math. J.
- Volume: 51
- Year: 1984
- Pages: 355-394
- MR number: 0747870
- Categorized under:
- A uniqueness theorem for representations of ${rm GSO}(6)$ and the strong multiplicity one theorem for generic representations of ${rm GSp}(4)$ [169]
- David Soudry
- Israel J. Math.
- Volume: 58
- Year: 1987
- Pages: 257-287
- MR number: 0917359
- Categorized under:
- Root->Global representation theory [1]->Global theta correspondences [119]
- Root->Global representation theory [1]->Discrete spectrum [123]
- Root->Local representation theory [2]->Non-archimedean representation theory [29]->Theta correspondence [142]
- Root->Local representation theory [2]->Non-archimedean representation theory [29]->Whittaker, Fourier-Jacobi and Bessel models [159]
- Root->Global representation theory [1]->Generic representations [194]
- On a correspondence of automorphic forms on orthogonal groups of order five [185]
- David Soudry
- J. Math. Pures Appl.
- Volume: 66
- Year: 1987
- Pages: 407-436
- MR number: 0928272
- Categorized under:
- Special representations of rank one orthogonal groups [186]
- Ilya Piatetski-Shapiro; David Soudry
- Israel J. Math.
- Volume: 64
- Year: 1988
- Pages: 276-314
- MR number: 0995573
- Categorized under:
- The CAP representations of $GSp(4, {mathbf A})$ PDF [19]
- David Soudry
- J. Reine Angew. Math.
- Volume: 383
- Year: 1988
- Pages: 87-108
- MR number: 0921988
- Categorized under:
- Explicit Howe duality in the stable range PDF [191]
- David Soudry
- J. Reine Angew. Math.
- Volume: 396
- Year: 1989
- Pages: 70-86
- MR number: 0988548
- Categorized under:
- Automorphic forms on ${rm GSp}(4)$ [33]
- David Soudry
- Festschrift in honor of I.I. Piatetski-Shapiro on the occasion of his sixtieth birthday
- Volume: II
- Year: 1990
- Pages: 291-303
- MR number: 1159121
- Categorized under:
- On the degree $5$ $L$-function for ${rm Sp}(2)$ [32]
- Stephen Kudla; Stephen Rallis; David Soudry
- Invent. Math.
- Volume: 107
- Year: 1992
- Pages: 483-541
- MR number: 1150600
- Categorized under:
- Root->Siegel modular forms [54]->Siegel's Main Theorem; Siegel-Weil formula [89]
- Root->Global representation theory [1]->Global L-functions [117]
- Root->Global representation theory [1]->Global theta correspondences [119]
- Root->Global representation theory [1]->Global models, periods and coefficients [126]
- Root->Local representation theory [2]->Non-archimedean representation theory [29]->Theta correspondence [142]
- Root->Local representation theory [2]->Archimedean representation theory [28]->Theta correspondence [144]
- Root->Local representation theory [2]->Archimedean representation theory [28]->L-parameters, local factors and zeta integrals [146]
- Root->Local representation theory [2]->Archimedean representation theory [28]->Deg. principal series representations, Siegel-Weil [148]
- Root->Local representation theory [2]->Non-archimedean representation theory [29]->L-parameters and local factors [157]
- Root->Local representation theory [2]->Non-archimedean representation theory [29]->Deg. principal series representations, Siegel-Weil [160]
- $l$-adic representations associated to modular forms over imaginary quadratic fields. I. Lifting to ${rm GSp}sb 4(Q)$ [193]
- Michael Harris; David Soudry; Richard Taylor
- Invent. Math.
- Volume: 112
- Year: 1993
- Pages: 377-411
- MR number: 1213108
- Categorized under:
- On the Archimedean theory of Rankin-Selberg convolutions for ${rm SO}_{2l+1} times {rm GL}_n$ [50]
- David Soudry
- Ann. Sci. 'Ecole Norm. Sup. (4)
- Volume: 28
- Year: 1995
- Pages: 161-224
- MR number: 1318068
- Categorized under:
- A new construction of the inverse Shimura correspondence [194]
- David Ginzburg; Stephen Rallis; David Soudry
- Internat. Math. Res. Notices
- Volume: 1997, no. 7
- Year: 1997
- Pages: 349-357
- MR number: 1440573
- Categorized under:
- Periods, poles of $L$-functions and symplectic-orthogonal theta lifts PDF [195]
- David Ginzburg; Stephen Rallis; David Soudry
- J. Reine Angew. Math.
- Volume: 487
- Year: 1997
- Pages: 85-114
- MR number: 1454260
- Categorized under:
- Root->Global representation theory [1]->Global L-functions [117]
- Root->Global representation theory [1]->Global theta correspondences [119]
- Root->Global representation theory [1]->Global models, periods and coefficients [126]
- Root->Local representation theory [2]->Non-archimedean representation theory [29]->Theta correspondence [142]
- Root->Local representation theory [2]->Non-archimedean representation theory [29]->L-parameters and local factors [157]
- $L$-functions for symplectic groups [199]
- David Ginzburg; Stephen Rallis; David Soudry
- Bull. Soc. Math. France
- Volume: 126
- Year: 1998
- Pages: 181-244
- MR number: 1675971
- Categorized under:
- Root->Global representation theory [1]->Global L-functions [117]
- Root->Local representation theory [2]->Archimedean representation theory [28]->L-parameters, local factors and zeta integrals [146]
- Root->Local representation theory [2]->Non-archimedean representation theory [29]->L-parameters and local factors [157]
- Lifting cusp forms on ${rm GL}sb {2n}$ to $tilde{rm Sp}sb {2n}$: the unramified correspondence [201]
- David Ginzburg; Stephen Rallis; David Soudry
- Duke Math. J.
- Volume: 100
- Year: 1999
- Pages: 243-266
- MR number: 1722953
- Categorized under:
- On a correspondence between cuspidal representations of ${rm GL}sb {2n}$ and $widetilde{rm Sp}sb {2n}$ [200]
- David Ginzburg; Stephen Rallis; David Soudry
- J. Amer. Math. Soc.
- Volume: 12
- Year: 1999
- Pages: 849-907
- MR number: 1671452
- Categorized under:
- Root->Global representation theory [1]->Global L-functions [117]
- Root->Global representation theory [1]->Functoriality [118]
- Root->Global representation theory [1]->Backwards lifting [130]
- Root->Local representation theory [2]->Non-archimedean representation theory [29]->L-parameters and local factors [157]
- Root->Local representation theory [2]->Non-archimedean representation theory [29]->Whittaker, Fourier-Jacobi and Bessel models [159]
- Root->Local representation theory [2]->Non-archimedean representation theory [29]->Discrete series representations [166]
- Root->Local representation theory [2]->Non-archimedean representation theory [29]->Supercuspidal representations [187]
- On explicit lifts of cusp forms from ${rm GL}sb m$ to classical groups [202]
- David Ginzburg; Stephen Rallis; David Soudry
- Ann. of Math.
- Volume: 150
- Year: 1999
- Pages: 807-866
- MR number: 1740991
- Categorized under:
- Full multiplicativity of gamma factors for ${rm SO}sb {2l+1}times{rm GL}sb n$ [203]
- David Soudry
- Israel J. Math.
- Volume: 120 (part B)
- Year: 2000
- Pages: 511-561
- MR number: 1809632
- Categorized under:
- Generic automorphic forms on ${rm SO}(2n+1)$: functorial lift to ${rm GL}(2n)$, endoscopy, and base change [204]
- David Ginzburg; Stephen Rallis; David Soudry
- Internat. Math. Res. Notices
- Volume: 2001, no. 14
- Year: 2001
- Pages: 729-764
- MR number: 1846354
- Categorized under:
- Endoscopic representations of ${widetilde{rm Sp}}sb {2n}$ [205]
- David Ginzburg; Stephen Rallis; David Soudry
- J. Inst. Math. Jussieu
- Volume: 1
- Year: 2002
- Pages: 77-123
- MR number: 1954940
- Categorized under:
- On Fourier coefficients of automorphic forms of symplectic groups [206]
- David Ginzburg; Stephen Rallis; David Soudry
- Manuscripta Math.
- Volume: 111
- Year: 2003
- Pages: 1-16
- MR number: 1981592
- Categorized under:
- The local converse theorem for ${rm SO}(2n+1)$ and applications [211]
- Dihua Jiang; David Soudry
- Ann. of Math.
- Volume: 157
- Year: 2003
- Pages: 743-806
- MR number: 1983781
- Categorized under:
- Generic representations and local Langlands reciprocity law for $p$-adic ${rm SO}sb {2n+1}$ [212]
- Dihua Jiang; David Soudry
- Contributions to automorphic forms, geometry, and number theory. Johns Hopkins UP, Baltimore, 2004
- Year: 2004
- Pages: 457-519
- MR number: 2058617
- Categorized under:
- Root->Local representation theory [2]->Non-archimedean representation theory [29]->L-parameters and local factors [157]
- Root->Local representation theory [2]->Non-archimedean representation theory [29]->Whittaker, Fourier-Jacobi and Bessel models [159]
- Root->Global representation theory [1]->Generic representations [194]
- Construction of CAP representations for symplectic groups using the descent method [1406]
- David Ginzburg; Stephen Rallis; David Soudry
- Ohio State Univ. Math. Res. Inst. Publ.
- Volume: 11
- Year: 2005
- Pages: 193-224
- MR number: 2192824
- Categorized under:
- On Langlands functoriality from classical groups to ${rm GL}sb n$ [216]
- David Soudry
- Ast'erisque
- Volume: 298
- Year: 2005
- Pages: 335-390
- MR number: 2141707
- Categorized under:
- Stability of the local gamma factor arising from the doubling method [167]
- Stephen Rallis; David Soudry
- Math. Ann.
- Volume: 333
- Year: 2005
- Pages: 291-313
- MR number: 2195117
- Categorized under:
- On multiplicity one theorem for generic cuspidal automorphic representations of $GSp(4)$ [1274]
- Dihua Jiang; David Soudry
- Pacific J. Math.
- Volume: 229
- Year: 2007
- Pages: 381-388
- MR number: 2276516
- Categorized under:
- On the genericity of cuspidal automorphic forms of $SO_{2n+1}$ [1275]
- Dihua Jiang; David Soudry
- J. Reine Angew. Math.
- Volume: 604
- Year: 2007
- Pages: 187-209
- Categorized under:
- On the genericity of cuspidal automorphic forms of $SO_{2n+1}$, II [1276]
- Dihua Jiang; David Soudry
- Compositio Math.
- Volume: 143
- Year: 2007
- Pages: 721-748
- Categorized under: